WindowsMemory - Guest Test
To understand the metrics reported by this test, it is essential to understand how memory is handled by the Operating System. On any system, memory is partitioned into a part that is available for user processes, and another that is available to the OS kernel. The kernel memory area is divided into several parts, with the two major parts (called "pools") being a nonpaged pool and a paged pool. The nonpaged pool is a section of memory that cannot, under any circumstances, be paged to disk. The paged pool is a section of memory that can be paged to disk. (Just being stored in the paged pool doesn't necessarily mean that something has been paged to disk. It just means that it has either been paged to disk or it could be paged to disk.) Sandwiched directly in between the nonpaged and paged pools (although technically part of the nonpaged pool) is a section of memory called the "System Page Table Entries," or "System PTEs." This test tracks critical metrics corresponding to the System PTEs and the pool areas of kernel memory.
Target of the test : A Microsoft Virtual Server
Agent deploying the test : An internal agent
Outputs of the test : One set of results for every guest on the monitored virtual server.
Parameter | Description |
---|---|
Test period |
How often should the test be executed. |
Host |
The IP address of the host for which this test is to be configured. |
Port |
The port at which the specified host listens. |
Inside View Using |
By default, this test communicates with every VM remotely and extracts “inside view” metrics. Therefore, by default, the inside view using flag is set to Remote connection to VM (Windows). Typically, to establish this remote connection with Windows VMs in particular, eG Enterprise requires that the eG agent be configured with domain administrator privileges. In high-security environments, where the IT staff might have reservations about exposing the credentials of their domain administrators, this approach to extracting “inside view” metrics might not be preferred. In such environments therefore, eG Enterprise provides administrators the option to deploy a piece of software called the eG VM Agent on every Windows VM; this VM agent allows the eG agent to collect “inside view” metrics from the Windows VMs without domain administrator rights. Refer to Installing and Configuring the eG VM Agent for more details on the eG VM Agent. To ensure that the “inside view” of Windows VMs is obtained using the eG VM Agent, set the inside view using flag to eG VM Agent (Windows). Once this is done, you can set the Domain, Admin User, and Admin Password parameters to none. |
Domain, Admin User, Admin Password, and |
By default, this test connects to each virtual guest remotely and attempts to collect “inside view” metrics. In order to obtain a remote connection, the test must be configured with user privileges that allow remote communication with the virtual guests. The first step towards this is to specify the Domain within which the virtual guests reside. The Admin User and Admin Password will change according to the Domain specification. Discussed below are the different values that the Domain parameter can take, and how they impact the Admin User and Admin Password specifications:
|
Measurement | Description | Measurement Unit | Interpretation |
---|---|---|---|
Free entries in system page table |
Indicates the number of page table entries not currently in use by the guest. |
Number |
The maximum number of System PTEs that a server can have is set when the server boots. In heavily-used servers, you can run out of system PTEs. You can use the registry to increase the number of system PTEs, but that encroaches into the paged pool area, and you could run out of paged pool memory. Running out of either one is bad, and the goal should be to tune your server so that you run out of both at the exact same time. Typically, the value of this metric should be above 3000. |
Pages read from disk |
Indicates the average number of times per second the disk was read to resolve hard fault paging. |
Reads/Sec |
|
Pages written to disk |
Indicates the average number of times per second the pages are written to disk to free up the physical memory. |
Writes/Sec |
|
Memory page ins |
Indicates the number of times per second that a process needed to access a piece of memory that was not in its working set, meaning that the guest had to retrieve it from the page file. |
Pages/Sec |
|
Memory page outs |
Indicates the number of times per second the guest decided to trim a process's working set by writing some memory to disk in order to free up physical memory for another process. |
Pages/Sec |
This value is a critical measure of the memory utilization on a guest. If this value never increases, then there is sufficient memory in the guest. Instantaneous spikes of this value are acceptable, but if the value itself starts to rise over time or with load, it implies that there is a memory shortage on the guest. |
Non-paged pool kernel memory size |
Indicates the total size of the kernel memory non-paged pool. |
MB |
The kernel memory nonpage pool is an area of guest memory (that is, memory used by the guest operating system) for kernel objects that cannot be written to disk, but must remain in memory as long as the objects are allocated. Typically, there should be no more than 100 MB of non-paged pool memory being used. |
Memory paged pool size |
Indicates the total size of the Paged Pool. |
MB |
If the Paged Pool starts to run out of space (when it's 80% full by default), the guest will automatically take some memory away from the System File Cache and give it to the Paged Pool. This makes the System File Cache smaller. However, the system file cache is critical, and so it will never reach zero. Hence, a significant increase in the paged pool size is a problem. This metric is a useful indicator of memory leaks in a guest. A memory leak occurs when the guest allocates more memory to a process than the process gives back to the pool. Any time of process can cause a memory leak. If the amount of paged pool data keeps increasing even though the workload on the guest remains constant, it is an indicator of a memory leak. |